Exercise 1

(a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$
9 x^{2}-y^{2}=1
$$

Solution

Part (a)

Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(9 x^{2}-y^{2}\right)=\frac{d}{d x}(1) \\
\frac{d}{d x}\left(9 x^{2}\right)-\frac{d}{d x}\left(y^{2}\right)=0 \\
9 \frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(y^{2}\right)=0 \\
9(2 x)-\left[2 y \cdot \frac{d}{d x}(y)\right]=0 \\
18 x-2 y y^{\prime}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=\frac{9 x}{y}
$$

Part (b)
Solve for y first.

$$
\begin{gathered}
y^{2}=9 x^{2}-1 \\
y= \pm \sqrt{9 x^{2}-1}
\end{gathered}
$$

Then take the derivative.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\pm \sqrt{9 x^{2}-1}\right) \\
& = \pm \frac{1}{2}\left(9 x^{2}-1\right)^{-1 / 2} \cdot \frac{d}{d x}\left(9 x^{2}-1\right) \\
& = \pm \frac{1}{2}\left(9 x^{2}-1\right)^{-1 / 2} \cdot(18 x) \\
& = \pm \frac{9 x}{\sqrt{9 x^{2}-1}} \\
& =\frac{9 x}{y}
\end{aligned}
$$

